Chapter 14 Waves, Light, and Sound Supplemental Worksheets

How do waves transfer energy through matter and through empty space?

What do the colors mean?

Have you ever seen weather reports that show a map with colorful images? Clear skies produce a clear weather map, but watch out if you see lots of blue, green, yellow, and red on the map!

- What do the different colors on the map mean?
- How do meteorologists get the information they display on a weather map?
- How do waves transfer energy through matter and through empty space?

Lesson 1

- **amplitude** maximum distance a wave varies from its rest position
- **electromagnetic wave** travels through matter or through empty space
- **frequency** number of wavelengths that pass a point each second
- **longitudinal wave** particles of a medium move back and forth parallel to the direction the wave travels
- **mechanical wave** travels only through matter
- perpendicular at right angles
- **refraction** change in direction of a wave as it changes speed, in moving from one medium into another
- **transverse wave** the disturbance is perpendicular to the direction the wave travels

Lesson 2

infrared wave electromagnetic wave with a wavelength shorter than a microwave but longer than light

Class

- **intensity** amount of energy that passes through a square meter of space in one second
- **opaque** material that light does not pass through
- **radio wave** low-frequency, lowenergy electromagnetic wave that has a wavelength longer than about 30 cm
- **range** set of values from least to greatest
- **translucent** material that allows most of the light that strikes it to pass through, but through which objects appear blurry
- **transparent** material that allows almost all of the light striking it to pass through, and through which objects can be seen clearly
- **ultraviolet wave** electromagnetic wave with a slightly shorter wavelength and higher frequency than light

Quick Vocabulary

Lesson 3

- **compression** region of a longitudinal wave where the particles in the medium are closest together
- **decibel (dB)** unit used to measure sound intensity, or loudness
- **pitch** perception of how high or low a sound seems
- **rarefaction** region of a longitudinal wave where the particles are farthest apart
- **rest position** the position of an undisturbed particle; particles are still in motion here

Lesson 1

Reading Guide

Key Concepts 🥬 ESSENTIAL QUESTIONS

- What are waves, and how are waves produced?
- How can you describe waves by their properties?
- What are some ways in which waves interact with matter?

Vocabulary

Video

mechanical wave p. 448 electromagnetic wave p. 448 transverse wave p. 449 longitudinal wave p. 449 frequency p. 451 amplitude p. 452 refraction p. 454

Science Video

inquiry) What causes the waves?

Have you ever watched a surfer ride the waves? Ocean waves are produced by winds far out at sea. By the time they reach shore, some waves have so much energy that they are taller than a person or even a house. Why do waves get taller as they approach the shore? What properties do water waves have in common with other types of waves?

Chapter 14

LESSON 1

Lesson Outline

Waves

- **A.** What are waves? **1.** All waves begin with a source of ______ that causes a back-and-forth or up-and-down ______, or movement. **2.** A(n) _______ is a disturbance that transfers _____ from one place to another without transferring ______. **3.** When a flag waves in the wind, the flag ripples back and forth as the energy _____ along the flag, but the fabric does not ______ forward with the wave energy. **4.** A(n) ______ wave travels only through matter. **5.** A(n) ______ wave can travel through empty space or through matter. **6.** There are _______ types of wave motion—transverse, _____, and a combination of both. _____ wave is a wave in which the disturbance is **a.** A(n) ____ perpendicular to the direction the wave travels. _____ wave is a wave that makes the particles of a **b.** A(n) ____ medium move back and forth parallel to the direction the wave travels. **7.** Two common waves in nature are water waves and waves. **a.** In water waves, water particles move in _____, indicating that these waves are a combination of _____ and waves. _____ waves occur during an earthquake. b. **B.** Properties of Waves _____ of a wave is the distance from one point, such **1.** The _____ as the crest, to the corresponding point on the next _____ **2.** The _____ _____ of a wave is the number of wavelengths that pass
- Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies Inc

a point each second.

Lesson Outline continued

3.	Frequency is measured in		(Hz); the	
		the wavelength, the	lower the frequency.	
4.	Wave speed depends on the travels through.	type of material, or		_, a wave
5.	The maximum distance a wa	ave varies from its re	est position is the	
		of the wave; the mo	re energy a(n)	
		wave has, the larger	the	
	wave's	will be.		
C. Wa	ve Interaction with Matter			
1.	When you knock on one sid	le of a door, the sour	nd travels as	
		sound waves throug	h the door.	
2.	These waves travel through	the	that makes up	the door
	to the	on the other	side.	
3.	The particles that make up t	he door	some of t	he sound
	energy; they increase their n	notion, changing to		energy
	This causes a(n)	in t	he sound.	
4.	Some of the energy of your	knock bounces, or _		, back
	into the room; that is why y	'ou	the sound.	
5.	Waves that bounce off a surf	face follow the law o	of	: the
	angle between the	(1	incoming) wave and the	
		(the perpendicular t	o the surface) is equal to t	he angle
	between the	wave a	nd the normal.	
6.	moving from one medium in	is the change in dire nto another.	ection of a wave as it chan	ges speed
7.	When entering a medium, w	vaves refract toward	the normal if they	
		and away from the	normal if	
	they	•		
8.	The change in direction of a		when it travel	s past the
	edge of an object or through	an opening is calle	d	;
	sound waves spread around	a(n)	due to diffrac	ction.

Content Practice A

Waves

Directions: On the line before each definition, write the letter of the term that matches it correctly. Each term is used only once.

1.	a wave in which the disturbance is perpendicular to the direction the wave travels	A. mechaniB. electrom
2.	the number of wavelengths that pass a point each second	C. transvers
3.	the maximum distance a wave varies from its rest position	E. frequenc
4.	a wave that can travel through empty space or through matter	G. refraction
5.	the change in direction of a wave as it changes speed, moving from one medium into another	
6.	a wave that makes the particles of a medium move back and forth parallel to the direction the wave travels	

7. a wave that travels only through matter

- ical wave
- agnetic wave
- se wave
- linal wave
- су
- de
- n

LESSON 1

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

LESSON 1

Content Practice B

Waves

Directions: *Circle the term in parentheses that correctly completes each sentence.*

- **1.** Waves always begin with a source of energy that causes a back-and-forth or up-and-down (transfer/disturbance).
- 2. Waves transfer energy, not (heat/matter), from place to place.
- **3.** The way in which waves transport energy (differs/is the same).
- **4.** A(n) (electromagnetic/mechanical) wave forms when a source of energy causes particles that make up a medium to vibrate.
- **5.** A (mechanical/transverse) wave that is produced by a vibrating electric charge is an electromagnetic wave.
- **6.** (Longitudinal/Electromagnetic) waves are always mechanical waves because this type of motion can occur only when energy passes from particle to particle of a medium.
- Two familiar types of waves in nature are seismic waves produced by (tornadoes/earthquakes) and water waves.
- 8. You can describe waves by their (properties/heights).
- **9.** The speed of a wave depends on the medium, or (strength/type) of material, through which it travels.
- **10.** Waves can carry different amounts of (energy/water).
- **11.** As waves travel, some of the energy they carry is transmitted, some is absorbed, and some is (reflected/held) by the particles in matter.

Key Concept Builder 🐲

Waves

Key Concept What are waves, and how are waves produced?

Directions: Complete the table by writing each sentence or phrase under the correct heading.

An example is energy from the Sun.

These form when a source of energy causes particles that make up a medium to vibrate.

These waves can travel through empty space or through matter.

These form when a charged particle vibrates.

The energy of a pebble dropped in water produces these waves.

These waves travel only through matter.

Mechanical Waves	Electromagnetic Waves
•	•
•	•
•	•

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Key Concept Builder 🐲

Waves

Key Concept What are waves, and how are waves produced?

Directions: *On the line before each statement, write the letter of the correct answer.*

 1. Waves are common in nature	e because many different
produce waves.	2
A. energy sources	
B. bodies of water	
C. weather conditions	
 2	waves form because there is friction between sea
wind and water.	
A. Water	
B. Seismic	
C. Longitudinal	
 3. A(n)	wave is called a seismic wave.
A. water	
B. sound	
C. earthquake	
 4. Seismic waves can be	·
A. transverse	
B. longitudinal	
C. a combination of longitu	idinal and transverse
 5. Water waves move	
A. as S waves	
B. in circular paths	
C. as transverse waves only	
6 . All seismic waves are	wayes because they move
 through matter	
A water	
B mechanical	
C. electromagnetic	
C. clectromagnetic	
 7	_ from the wind transfers to the water as the water
moves toward land.	
A. Energy	
B. Moisture	
C. Vibrations	

LESSON 1

Key Concept Builder 🐲

LESSON 1

Waves

Key Concept How can you describe waves by their properties?

Directions: Label this diagram by writing the correct terms from the word bank in each text box.

longer	wavelength,	lower	frequency
<u> </u>	U /		

shorter wavelength, higher frequency

Directions: Use the diagram to answer each question or respond to each statement on the lines provided.

3. Define *crests* and *troughs*.

4. What is wavelength?

5. Describe the possible range of wavelengths.

Key Concept Builder 🐲

Waves

Key Concept What are some ways in which waves interact with matter?

Directions: On each line, write the term from the word bank that describes the statement. Some terms will be used more than once.

absorption	diffraction	reflection	refraction	transmission	
	1.	Radio waves carry	y energy from an	antenna to a plane.	
	2.	A plane reflects th	ne radio waves ba	ck toward an antenna	1.
	3.	A plane and parti reflected wave ca	cles in the air ab rries less energy t	sorb some energy. The han the original wave	, , ,
	4.	When someone k to thermal energy	xnocks on a door, y and remains in	sound energy change the door.	2S
	5.	Some of the energy bounces back.	gy used to knock	on a door reflects, or	
	6.	Some of the soun	d from a knock p	asses through the doo	r.
		Instead of passing increases the mot	g through the doc tion of the partic	or, energy from a known or a known of the wood.	ck
		This is the chang past the edge of a	e in direction of a an object or throu	a wave when it travels igh an opening.	5
	9.	This is the chang speed, moving fro	e in direction of a om one medium	a wave as it changes into another.	
	10.	An object blocks change direction.	the path of a way	ve, causing the wave t	0

Lesson Quiz A

Waves

True or False

Directions: On the line before each statement, write T if the statement is true or F if the statement is false. If the statement is false, change the underlined word to make it true. Write your changes on the lines provided.

- **1.** <u>Mechanical</u> waves are waves that move through matter or empty space.
 - **2.** A wave in which the disturbance is perpendicular to the direction the wave travels is called a longitudinal wave.
 - **3.** The longer a wave's wavelength is, the <u>lower</u> its frequency will be.
 - **4.** The more energy a wave has, the <u>smaller</u> its amplitude will be.
 - 5. When a wave changes direction as it moves from one medium to another, diffraction occurs.

Multiple Choice

Directions: On the line before each question or statement, write the letter of the correct answer.

- **6.** Which term describes a wave bouncing back toward its source?
 - **A.** reflection
 - **B.** absorption
 - **C.** transmission
- 7. A change in direction in a wave when it passes through an opening is called
 - **A.** reflection.
 - **B.** refraction.
 - **C.** diffraction.

Lesson Quiz B

Waves

Short Answer

Directions: *Respond to each statement on the lines provided.*

1. Compare and contrast mechanical waves and electromagnetic waves.

- **2. Define** *longitudinal* wave.
- **3.** Explain the relationship between a wave's frequency and its wavelength.
- 4. **Describe** the relationship between a wave's energy and its amplitude.

Completion

Directions: On each line, write the term from the word bank that correctly completes each sentence. Not all terms are used.

é	absorption	diffraction	reflection	refraction	transmission	
5.	The change in	direction of a w	ave as it change	s speed, moving	from one medium	
	to another, is $_$					
6.		00	curs when wave	energy bounces	back toward its source	e.
7.		00	curs when a way	ve changes direct	ion when it travels	
	through an ope	ening.				

Lesson 2

Reading Guide

- How does light differ from other forms of electromagnetic waves?
- What are some ways in which light interacts with matter?
- How do eyes change light waves into the images you see?

Vocabulary

radio wave p. 459 infrared wave p. 460 ultraviolet wave p. 460 transparent p. 462 translucent p. 462 opaque p. 462 intensity p. 464

g Multilingual eGlossary

Video

BrainPOP®

- Science Video
- What's Science Got to do With It?

Light

Inquiry) Spreading Light?

Thick trees in a forest can block much of the sunlight, but some light still shines through. Why do you see bands of dim and bright light? Like all electromagnetic waves, light travels in straight lines. But light that moves past the trees can scatter and spread out.

Lesson Outline	LESSON 2
Light	
A. What are light waves?	
1	is a small range of electromagnetic waves that are
detected by most peop	le's
2. Objects that produce l	ight, including the Sun and lightbulbs, are
	objects.
B. The Electromagnetic Spect	um
1. There are	main types of
that make up the elect	romagnetic spectrum; these waves have different
wavelengths,	, and energy.
2. The	produces energy that is carried outward in all
directions as	
3. More than 90 percent	of the Sun's energy that reaches Earth is carried by
	and waves.
C. Speed, Wavelength, and Fr	equency
1. The	of light in empty space is 3×10^8 m/s.
2. The	and the frequency of light determines the
	of the light.
a. The light color that	has the wavelength and the
	frequency is red.
b. Colors at the violet	end of the spectrum have the shortest
	and the frequency.
D. Light and Matter Interact	
1. A(n)	material allows almost all the light that strikes it
to pass through; objec material.	ts can be seen through this
2. A(n)	material allows most of the light that strikes it to
pass through; objects	ppear through this material.
3. Light does not pass the	ough material.

Lesson Outline continued

,	4.	You see a clear reflective	image when ra	ys reflect from a(r	1)
			surface.		
	5.	Light interacts with diffe	erent types of _		in different ways;
		some of the light is reflec	cted, and some i	is transmitted or _	
E. C	olc	or			
	1.	Colors people see are du	e to the		of the light that enters
		their colors are the wavelengtl	; with a ; with a ; with a ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	a(n) ne object.	object, the
	2.	Objects that are except the wavelengths o	of the color tha	absorb all of t people see when	the wavelengths of light white light hits the
		object; so the		of an opaque ol	oject is the color of the
		light that the object			
	3 . ′	The color of a transparer	nt or		object is the color the
		object	•		
F. Ir	ntei	nsity of Light			
	1.		is the amou	int of energy that	passes through 1 m ² of
		space in 1 second.			
	2.	Intensity varies with		from the	e light source; the
			the source,	the greater the int	ensity of the light.
	3.		is a person's	s perception of the	e light intensity.
G. Ir	itei	raction of Sunlight and N	Aatter		
	1.	Particles that make up th light more than they sca	e air tter longer wave	elengths.	the blue wavelengths of
	2.		of sunlight	causes the Sun to	be visible even after it has
		set below Earth's			
H. V	isic	on and the Eye			
	1.	Light enters the eye thro	ugh the		which, along with the
			, focuses ligh	nt onto the	
	2.	Cells in the retina		light and s	end signals about the
		light to the			

Co	ontent Practice A	LESSON 2
Lig	ht	
Dire each s	ctions: <i>Unscramble the terms.</i> <i>sentence. Each term is used only</i>	<i>Then write the unscrambled term from the word bank that correctly completes , once.</i>
d	iora vewa	redinfra weav
0	letultravi vwae	nspartraent
lu	ıctransent	queopa
n	sitintey	
1.	meter of space in one sec	refers to the amount of energy that passes through a square ond.
2.	A(n) pass.	material is a material through which light does not
3. 4.	A material that allows alm which objects can be seer A(n)	nost all of the light striking it to pass through and through a clearly is
5.	A low-frequency, low-ene about 30 cm is called a(n)	rgy electromagnetic wave that has a wavelength longer than
6.	An electromagnetic wave than light is a(n)	with a slightly shorter wavelength and higher frequency
7.	A material that allows mo which objects appear blu	ost of the light striking it to pass through but through rry is

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Content Practice B

Light

Directions: Complete the chart with the correct information in the space provided.

Electromagnetic Wave	Definition	One Property
radio waves	1.	2.
microwaves	3.	4.
5.	an electromagnetic wave with a wavelength shorter than a microwave but longer than light	6.
7.	8.	includes a range of wavelengths
9.	10.	The shorter the wavelength of an electromagnetic wave is, the more energy the wave carries and the more harmful the wave can be.
11.	a high-energy electromagnetic wave that has a slightly shorter wavelength and higher frequency than an ultraviolet wave	12.
13.	14.	have shorter wavelengths and higher frequencies than any other form of electromagnetic wave

Key Concept Builder 🐲

Light

Key Concept How does light differ from other forms of electromagnetic waves?

Directions: *On the line before each statement, write the letter of the correct answer.*

 1	and	are two main				
ty	ypes of waves.					
A	. Mechanical waves, transverse waves					
B	Transverse waves, electromagnetic waves					
C	. Mechanical waves, electromagnetic waves					
 2	waves can move only	through matter, but				
e	electromagnetic waves can move through matter or empty space.					
Α	. Sound					
B	B. Transverse					
C	. Mechanical					
 3. T	he most familiar type of electromagnetic wave is					
A	. light					
B	B. gamma					
C	. microwave					
 4	of electrons produce e	electromagnetic waves that				
h	ave many different wavelengths.					
A	. Qualities					
B	B. Numbers					
C	· Vibrations					
 5. Y	our eyes are able to o	only a narrow range of the				
W	vavelengths produced by electromagnetic waves.					
A	. block					
B	B. detect					
C	. produce					
 6. L	ight differs from other forms of electromagnetic	waves only in its wavelength,				
it	s frequency, and the amount of	it carries.				
A	. heat					
B	B. color					
C	energy					

Key Concept Builder 🛛 🕬

LESSON 2

Light

Key Concept How does light differ from other forms of electromagnetic waves?

Directions: Complete the chart by writing two characteristics of each electromagnetic wave.

Electromagnetic Wave	Characteristics
radio waves	1.
	2.
microwaves	3.
	4.
infrared waves	5.
	6.
light	7.
	8.
ultraviolet waves	9.
	10.
X-rays	11.
	12.
gamma rays	13.
	14.

Key Concept Builder 🐲

Light

Key Concept What are some ways in which light interacts with matter?

Directions: Label this diagram by writing the correct term from the word bank on each line.

gamma	increasing (energy increasing frequen	ncy X-rays
increasing wavelength microwave	inirared	ngnt ultraviolet	
merowave	Tauto	untraviolet	
1 3		5	7
	4.		CAUTION
	8		
	9		
	10		

Directions: Use the diagram to answer each question or respond to each statement on the lines provided.

11. According to the diagram, how do electromagnetic waves differ?

- **12.** Which electromagnetic wave has the longest wavelength? ______
- **13.** Which electromagnetic wave has the most energy? _____

Name	Date	Class

Light

Key Concept Builder 🐲

Key Concept How do eyes change light waves into the images you see?

Directions: *Write a question and an answer for the parts of the eye listed. Focus on how the parts work together to produce image signals for the brain.*

1.	cornea
	Question:
	Answer:
2.	iris and pupil
	Question:
	Answer:
3.	lens and ciliary muscles
	Ouestion:
	Answer
4.	retina
	Question:
	Answer:
5.	rod cells and cone cells
	Question:
	Answer:
6.	optic nerve
	Question:
	Answer:

LESSON 2

Lesson Quiz A

Light

Matching

Directions: On the line before each definition, write the letter of the term that matches it correctly. Each term is used only once.

Matching Set 1

	1.	a material through which objects can be seen	A. opaque
		clearly	B. transparent
	2.	a material through which objects appear blurry	C. translucent
	3.	a material through which light does not pass	
Matchin	g So	et 2	
	4.	low-frequency, low-energy electromagnetic waves	A. radio waves
		with a wavelength longer than 30 cm	B. infrared waves
	5.	electromagnetic waves with a slightly shorter wavelength and a higher frequency than light	C. ultraviolet waves
	6.	electromagnetic waves with a wavelength shorter than a microwave and longer than light	

Multiple Choice

Directions: On the line before each question or statement, write the letter of the correct answer.

- 7. The color of an opaque object is the color of the light it
 - A. reflects.
 - **B.** absorbs.
 - **C.** transmits.
- 8. The intensity of light depends on
 - **A.** its wavelength.
 - **B.** how much of it is absorbed.
 - **C.** the amount of energy it has.
 - 9. Which structure sends signals about what you see to the brain?
 - A. lens
 - **B.** retina
 - C. cornea

LESSON 2

Lesson Quiz B

Light Matching

Directions: On the line before each definition, write the letter of the term that matches it correctly. Not all terms are used.

 1. a material through which objects can be seen	A. intensity
clearly	B. radio waves
 2. a material through which objects appear blurry	C. X-rays
 3. a material through which light does not pass	D. opaque
 4. low-frequency, low-energy electromagnetic waves	E. transparent
with a wavelength longer than 30 cm	F. translucent
 5. electromagnetic waves with a slightly shorter	G. infrared waves
wavelength and a higher frequency than light	H. ultraviolet waves
 6. electromagnetic waves with a wavelength shorter	
than a microwave and longer than light	

Multiple Choice

Directions: *On the line before each question or statement, write the letter of the correct answer.*

- 7. A blue stained-glass window appears to be blue because it
 - **A.** refracts blue light.
 - **B.** scatters blue light.
 - **C.** absorbs blue light.
 - **D.** transmits blue light.
- **8.** The intensity of a light determines its
 - **A.** color.
 - **B.** brightness.
 - **C.** absorption.
 - **D.** transmission.
- 9. What is a function of the cornea and lens?
 - A. allows you to see color
 - **B.** sends signals to the brain
 - **C.** focuses light on the retina
 - **D.** changes the size of the eye's pupil

Lesson 3

Reading Guide

Key Concepts

- What are some properties of sound waves?
- How do ears enable people to hear sounds?

Vocabulary

compression p. 471 rarefaction p. 471 pitch p. 471 decibel p. 473

Multilingual eGlossary

Video Science Video

Sound

Inquiry) How does it make sounds?

Have you ever stood nearby as a marching band plays or carefully watched musicians during a concert? The notes they play can be high or low, loud or soft, or anything in between. Why are the sounds so different? How are sounds perceived?

469

Lesson Outline

Sound

- **A.** What are sound waves?
 - **1.** Sound waves are ______ longitudinal waves that travel through a(n) ______.
 - **2.** Sound waves are ______ the ear can detect; they usually have frequencies in the range of 20 to 20,000 ______ for humans.
 - 3. As sound waves move through air, the air particles bounce off objects and exert_____.
 - _____ is the region of a longitudinal wave where the **a.** A(n) _____ particles of the medium are closest together.
 - _____ is the region of a longitudinal wave where the **b.** A(n) _____ particles of the medium are farthest apart.
- **B.** Properties of Sound Waves
 - 1. Many properties of sound waves depend on the compressions and
 - _____ of the sound waves.
 - **2.** The wavelength of a(n) ______ becomes shorter as the wave's _____ increases.
 - ______ is the perception of how high or low a sound seems. a.
 - **b.** A sound that has a high ______ is considered to have
 - a(n) _____ pitch.
 - **3.** The greater the energy in a sound is, the ______ the particles move as they ______.
 - **a.** The ______ of a sound wave is the distance that a vibrating particle moves from its _____ position.
 - **b.** The more energy a sound ______ has, the

______ the amplitude of the wave will be.

- **4.** Sound waves travel much ______ than electromagnetic waves do.
 - **a.** Sound waves travel ______ through gases than through
 - solids because the particles in ______ are farther apart; so it takes longer to transfer sound energy between particles in a gas.

Lesson Outline continued

	b. Sound waves travel faster a	as the temperature of a ga	S
	, and sound waves travel slower as		
	the temperature of a liquid	1	
5.	i	s a person's perception of	a sound's intensity.
б.	The	, abbreviated dB, is the	e unit used to measure sound
7.	Sounds above	dB can resul	lt in permanent
	1	OSS.	
C. Hea	ring and the Ear		
1.	The external	ear collects so	ound waves.
2.	The middle ear includes the		and three
	small or intensifies, the sound wave	; this part of the ear _ es.	
3.	The inner ear contains the		, which converts sound waves
	to processes, creating the percer	_ signals that the otion of sound.	then

Name			Date	Class
Content Practic	e A			LESSON 3
Sound				
Directions: On each line, will be used more than once.	write the term from	the word bank the	at correctly completes eac	ch sentence. Some terms
compression(s)	decibel	pitch	rarefaction(s)	
1. The perception of	how high or lov	v a sound seem	ns is called	
 3. A	is th	ne region of a l	ongitudinal wave w	where the particles
4. A sound wave proo it passes through r	luces natter.		and	as
5. As the the sounds without	t risking hearin	_ level goes up, g loss gets shoi	the amount of tim ter and shorter.	e you can listen to
6. The higher the free will be.	quency is, the h	igher the		of the sound

7. A ______ is the region of a longitudinal wave where the particles in the medium are closest together.

C	ontent Practice B LESSON
So	ound
Dir	rections: Answer each question or respond to each statement on the lines provided.
1.	List two characteristics of sound waves.
2.	Describe the relationship between age and hearing.
3.	How do compressions and rarefactions differ?
4.	Explain how pitch and frequency are related.
5.	Define <i>amplitude</i> .
6.	Why do sound waves travel slower than other electromagnetic waves?
7.	What is the highest decibel level that you can listen to without risking permanent hearing loss?
8.	How many main parts does the human ear have?

Language Arts Support

LESSON 3

Reading Comprehension Activity: Reading Mathematics in Science

Mathematics is an important part of science. However, mathematics has its own language. Understanding this language will help you read and take notes about science. The language of mathematics uses many different symbols to represent relationships, operations, and variables. Some common symbols are shown in the table below.

Symbol	Meaning	Example
>	greater than	10 > 4
<	less than	4 < 10
λ	wavelength	The λ of a microwave is between 1 mm and 30 cm.
m/s	meters per second	A wave's speed can be measured in m/s.
Δ	change	Sound waves Δ to nerve signals in your ear.
\perp	perpendicular	Lines that are \perp cross at right angles.
	parallel	Lines that are next to each other and do not intersect are .

Directions: Study the table above. Then insert the correct symbol to complete the following sentences.

- **1.** Transverse waves move ______ to the direction that the wave travels.
- **2.** A wave that has a shorter _____ has a higher frequency.
- **3.** Dolphins and dogs have hearing ranges that are ______ the hearing range of humans.
- **4.** The frequency of an infrared wave is _____ the frequency of an X-ray.
- 5. Refraction occurs when waves ______ speed and direction upon moving from one medium to another.
- **6.** Longitudinal waves move ______ to the direction that the wave travels.
- **7.** The speed of light is 3×10^8 _____.

_ Date _

Language Arts Support

LESSON 3

Reading Comprehension Activity: Reading for Standardized Tests

Developing reading skills can help you when you take tests. Certain skills are particularly helpful for standardized tests. Follow these steps when you read a standardized test question:

- **1.** Read the question carefully. Make sure that you understand what the question is asking.
- **2.** Reread the question if necessary. Underline words or terms that are important.
- **3.** Cover the response choices with your hand and answer the question.
- **4.** Look at the response choices. Read every choice and cross out the ones that you know are incorrect.

Directions: *Underline words that are important in each question below. Then write the letter of the correct answer on the line before each statement.*

- **1.** Which kind of waves ripple out in all directions when a child throws a pebble into a pond?
 - **A.** light waves
 - **B.** sound waves
 - **C.** mechanical waves
 - **D.** electromagnetic waves
- **2.** Which term describes the maximum distance that a wave varies from its rest position?
 - **A.** amplitude
 - **B.** frequency
 - **C.** wavelength
 - **D.** transmission
- **3.** Which unit would you use to measure the loudness of an airplane taking off?
 - **A.** hertz
 - **B.** decibel
 - **C.** centimeter
 - **D.** meters per second
- **4.** Luis's T-shirt reflects green light waves. What color is Luis's shirt?
 - A. red
 - **B.** blue
 - C. green
 - **D.** black

Waves, Light, and Sound

Math Skills 🕻

Use a Fraction

If you move away from the source of a sound, the sound gets softer. If you move toward the source of a sound, it gets louder. This is because the intensity of the sound decreases as you move away from its source and increases as you move toward a source. The fraction by which sound intensity changes depends on the starting distance from the source, r_1 , and the ending distance from the source, r_2 .

change in sound intensity $= \left(\frac{r_1}{r_2}\right)^2$

By what fraction does sound intensity decrease if you start at $\mathbf{3}$ m from the source and move to $\mathbf{9}$ m from the source?

Step 1 Identify the values given in the problem.

$$r_1 = 3 \text{ m}$$

 $r_2 = 9 \text{ m}$

Step 2 Insert the known values to solve.

change in sound intensity = $\left(\frac{r_1}{r_2}\right)^2$ = $\left(\frac{3}{9}\right)^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$

The sound intensity decreases to $\frac{1}{9}$ of its original value.

Practice

- **1.** By what fraction does sound intensity decrease if you start at 4 m from the source and move to 6 m from the source?
- By what fraction does sound intensity decrease if you move from 6 m away to 8 m away from a source?

3. By how many times does the sound intensity increase if you move from 6 m away to 3 m away from a source?

4. You are standing at a distance of 1 m from a sound source. How does the sound intensity change if you move to a distance of 10 m from the source?

LESSON 3

Key Concept Builder 🐲

Sound

Key Concept What are some properties of sound waves?

Directions: *On the line before each answer, write the letter of the question that matches it correctly. Each question is used only once.*

- A. Which sound waves can healthy young humans hear?
- B. In general, why does a female voice sound higher-pitched than a male voice?
- C. How does the distance between the particles of a gas affect its ability to transfer sound?
- D. The human ear is most sensitive to which frequencies?
- E. How can you describe a sound wave?
- F. Why do you hear a loud sound if you drop a book onto a wooden floor but not if you drop the book onto a pillow?
- G. What are sound waves?
- H. What happens as the temperature of a gas increases?
- I. What is the effect of temperature on liquids and solids?
- **1.** vibrations that the ear can detect
- **2.** sound waves produced by vibrations between about 20 Hz and 20,000 Hz
- **3.** frequencies between 1,000 and 4,000 Hz
- **4.** because there is only a slight vibration
- **5.** because the range of frequencies produced is higher
 - **6.** by its wavelength, frequency, amplitude, and speed
 - 7. They collide less often than particles in a liquid or a solid so it takes longer to transfer sound energy from one particle to another.
 - **8.** The particles move faster and collide more often.
 - **9.** As liquids and solids cool, the molecules slow down and move closer. They collide more often and transfer energy faster.

Name	Date	Class
Key Concept Builder 🐲		LESSON 3

Sound

Key Concept What are some properties of sound waves?

Directions: Use the diagram to answer each question or respond to each statement on the lines provided.

- 1. According to the diagram, what does a sound wave produce as it passes through matter?
- **2. Describe** the motion of the air particles in the diagram.

3. Describe the appearance of the air particles in areas of compression and rarefaction. Then explain how the appearances relate to air pressure.

Key Concept	Builder	
-------------	---------	--

Sound

Key Concept What are some properties of sound waves?

Directions: Change the underlined word(s) to make each false statement true. Write your changes on the lines provided.

- 1. For light waves, many properties depend on the height and shape of the longitudinal waves. _____
- 2. Many types of sound waves depend on their compressions and rarefactions.
- 3. People and instruments produce different ranges of sound temperatures.
- 4. The wavelength of a wave gets longer as the frequency increases.
- 5. You use more energy to <u>whisper</u> than to <u>shout</u>.
- 6. The more <u>sound</u> that is used to produce the sound wave, the greater the amplitude will be.
- 7. Two factors that affect the speed of sound are the type of medium and its height.
- 8. <u>A solid</u> takes longer than a liquid to transfer sound energy from one particle to another.

58

Key Concept Builder 🐲

Sound

Key Concept How do ears enable people to hear sounds?

Directions: *On the line before each description, write the letter of the term or phrase that matches it correctly. Some terms or phrases will be used more than once.*

 1. has three main parts	A. cochlea
 2. the part of the ear you can see	B. different parts of the ear
 3. amplifies, or increases, the intensity of sound waves	C. human ear
4 , includes the eardrum	D. inner ear
	E. middle ear
 5. collects sound waves	F. outer ear
 6. includes three tiny bones called the hammer, the anvil, and the stirrup	
 7. contains the cochlea	
 8. has a spiral shape and changes sound waves to nerve signals	
 9. changes sound waves to nerve signals that the brain interprets	
-	

10. work together to gather and interpret sound waves

Date Class

Lesson Quiz A

Sound

Completion

Directions: On each line, write the term from the word bank that correctly completes each sentence. Each term is used only once.

(compression	decibel	pitch	rarefaction	
1.	The perception of	how high or l	ow a sound se	ems is called	
2.	The region of a lo	ngitudinal wav	ve where the p	articles of the medium are	e closer together
	is called a		·		
3.	The unit used to n	neasure sound	intensity is ca	lled the	·
4.	The region of a lo	ngitudinal way	ve where the p	articles are farthest apart i	is called

а_____ _.

Matching

Directions: On the line before each definition, write the letter of the term that matches it correctly. Each term is used only once.

 5. collects sound waves	A. outer ear
 6. amplifies sound waves	B. inner ear
 7. changes sound waves to nerve signals	C. middle ear

LESSON 3

Lesson Quiz B

Sound

Completion

Directions: On each line, write the term from the word bank that correctly completes each sentence. Not all terms are used.

	compression	decibel	pitch
]	rarefaction	vibration	wavelength
1.	The perception of h	low high or low a	sound seems is called
2.	The region of a long	gitudinal wave wh	nere the particles of the medium are closer together
	is called a		
3.	The unit that is used	l to measure sound	d intensity is called the
4.	The region of a long	gitudinal wave wh	nere the particles are farthest apart is called
	a		

Matching

Directions: On the line before each definition, write the letter of the term that matches it correctly. Not all terms are used.

- **5.** the main function of the outer ear
- **6.** the main function of the middle ear
- 7. the main function of the inner ear

- **A.** collecting sound waves
- **B.** reflecting sound waves
- **C.** changing sound waves to nerve signals
- **D.** amplifying sound waves

Lesson 1: Waves

A. What are waves?

- **1.** All waves begin with a source of <u>energy</u> that causes a back-and-forth or up-and-down <u>disturbance</u>, or movement.
- **2.** A(n) wave is a disturbance that transfers <u>energy</u> from one place to another without transferring <u>matter</u>.
- **3.** When a flag waves in the wind, the flag ripples back and forth as the energy <u>travels</u> along the flag, but the fabric does not <u>move</u> forward with the wave energy.
- **4.** A(n) <u>mechanical</u> wave travels only through matter.
- **5.** A(n) <u>electromagnetic</u> wave can travel through empty space or through matter.
- **6.** There are <u>three</u> types of wave motion—transverse, <u>longitudinal</u>, and a combination of both.
- **a.** A(n) <u>transverse</u> wave is a wave in which the disturbance is perpendicular to the direction the wave travels.
- **b.** A(n) <u>longitudinal</u> wave is a wave that makes the particles of a medium move back and forth parallel to the direction the wave travels.
- 7. Two common waves in nature are water waves and seismic waves.
- **a.** In water waves, water particles move in <u>circles</u>, indicating that these waves are a combination of <u>longitudinal</u> and <u>transverse</u> waves.
- **b.** <u>Seismic</u> waves occur during an earthquake.
- **B.** Properties of Waves
- **1.** The <u>wavelength</u> of a wave is the distance from one point, such as the crest, to the corresponding point on the next <u>wave</u>.
- **2.** The <u>frequency</u> of a wave is the number of wavelengths that pass a point each second.
- Frequency is measured in <u>hertz</u> (Hz); the <u>longer</u> the wavelength, the lower the frequency.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

- 4. Wave speed depends on the type of material, or medium, a wave travels through.
- The maximum distance a wave varies from its rest position is the <u>amplitude</u> of the wave; the more energy a(n) <u>mechanical</u> wave has, the larger the wave's <u>amplitude</u> will be.
- C. Wave Interaction with Matter
- **1.** When you knock on one side of a door, the sound travels as <u>longitudinal</u> sound waves through the door.

Waves, Light, and Sound

2

Lesson Outline continued

- These waves travel through the <u>matter</u> that makes up the door to the <u>air</u> on the other side.
- **3.** The particles that make up the door <u>absorb</u> some of the sound energy; they increase their motion, changing to <u>thermal</u> energy. This causes a(n) <u>decrease</u> in the sound.
- Some of the energy of your knock bounces, or <u>reflects</u>, back into the room; that is why you <u>hear</u> the sound.
- 5. Waves that bounce off a surface follow the law of <u>reflection</u>: the angle between the <u>incident</u> (incoming) wave and the <u>normal</u> (the perpendicular to the surface) is equal to the angle between the <u>reflected</u> wave and the normal.
- <u>Refraction</u> is the change in direction of a wave as it changes speed, moving from one medium into another.
- **7.** When entering a medium, waves refract toward the normal if they <u>slow down</u> and away from the normal if they <u>speed up</u>.
- 8. The change in direction of a(n) <u>wave</u> when it travels past the edge of an object or through an opening is called <u>diffraction</u>; sound waves spread around a(n) <u>corner</u> due to diffraction.

Discussion Question

In terms of waves, what is an echo? Based on what you have learned in this lesson, what generalization can you make about the direction an echo travels?

An echo is a sound wave that bounces back, or reflects, from a surface. An echo, like other reflected waves, will follow the law of reflection, which states that the angle of incidence is equal to the angle of reflection. This means that if you can identify the surface that the echo bounced off of, you can determine where the sound came from based on the angle the sound waves made when they hit that surface.

Waves, Light, and Sound

Lesson
õ
Ŧ
3
P
Ör
Fe
ã
Σ
3

Lesson 2: Light

A. What are light waves?

- Light is a small range of electromagnetic waves that are detected by most people's eyes.
- **2.** Objects that produce light, including the Sun and lightbulbs, are <u>luminous</u> objects.
- **B.** The Electromagnetic Spectrum
- **1.** There are <u>seven</u> main types of <u>waves</u> that make up the electromagnetic spectrum; these waves have different wavelengths, <u>frequencies</u>, and energy.
- The <u>Sun</u> produces energy that is carried outward in all directions as <u>electromagnetic</u> <u>waves</u>.
- **3.** More than 90 percent of the Sun's energy that reaches Earth is carried by <u>light</u> and <u>infrared</u> waves.

C. Speed, Wavelength, and Frequency

- **1.** The <u>speed</u> of light in empty space is 3×10^8 m/s.
- **2.** The <u>wavelength</u> and the frequency of light determines the <u>color</u> of the light.
- **a.** The light color that has the <u>longest</u> wavelength and the <u>lowest</u> frequency is red.
- **b.** Colors at the violet end of the spectrum have the shortest <u>wavelength</u> and the <u>highest</u> frequency.

D. Light and Matter Interact

- A(n) <u>transparent</u> material allows almost all the light that strikes it to pass through; objects can be seen <u>clearly</u> through this material.
- A(n) <u>translucent</u> material allows most of the light that strikes it to pass through; objects appear <u>blurry</u> through this material.
- 3. Light does not pass through opaque material.
- 4. You see a clear reflective image when rays reflect from a(n) smooth surface.
- Light interacts with different types of <u>matter</u> in different ways; some of the light is reflected, and some is transmitted or <u>absorbed</u>.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

E. Color

- **1.** Colors people see are
- Colors people see are due to the <u>wavelength</u> of the light that enters their <u>eyes</u>; with a(n) <u>luminous</u> object, the colors are the wavelengths emitted by the object.
- 2. Objects that are <u>opaque</u> absorb all the wavelengths of light except the wavelengths of the color that people see when white light hits the object; so the <u>color</u> of an opaque object is the color of the light that the object <u>reflects</u>.
- 3. The color of a transparent or translucent object is the color the object transmits.

Waves, Light, and Sound

4

Lesson Outline continued

F. Intensity of Light

- **1.** Intensity is the amount of energy that passes through 1 m^2 of space in 1 second.
- **2.** Intensity varies with <u>distance</u> from the light source; the <u>closer</u> the source, the greater the intensity of the light.
- **3.** <u>Brightness</u> is a person's perception of the light intensity.
- G. Interaction of Sunlight and Matter
- **1.** Particles that make up the air <u>scatter</u> the blue wavelengths of light more than they scatter longer wavelengths.
- <u>Refraction</u> of sunlight causes the Sun to be visible even after it has set below Earth's horizon.
- H. Vision and the Eye
- **1.** Light enters the eye through the <u>cornea</u>, which along with the <u>lens</u>, focuses light onto the <u>retina</u>.
- **2.** Cells in the retina <u>absorb</u> light and send signals about the light to the <u>brain</u>.

Discussion Question

Compare and contrast radio waves and microwaves.

Radio waves are similar to microwaves—both are types of electromagnetic waves with longer wavelengths than most other electromagnetic waves and both are used in communication. They also differ—microwaves are shorter than radio waves and have higher energy than radio waves, so they can be used to cook food in addition to their use in transmitting signals for communication.

Waves, Light, and Sound

Lesson Outline for Teaching

Lesson 3: Sound

A. What are sound waves?

- **1.** Sound waves are <u>mechanical</u> longitudinal waves that travel through a(n) <u>medium</u>.
- 2. Sound waves are <u>vibrations</u> the ear can detect; they usually have frequencies in the range of 20 to 20,000 hertz (or Hz) for humans.
- 3. As sound waves move through air, the air particles bounce off objects and exert pressure (or force)
- **a.** A(n) <u>compression</u> is the region of a longitudinal wave where the particles of the medium are closest together
- **b.** A(n) <u>rarefaction</u> is the region of a longitudinal wave where the particles of the medium are farthest apart.

B. Properties of Sound Waves

- 1. Many properties of sound waves depend on the compressions and rarefactions of the sound waves
- Ņ The wavelength of a(n) wave becomes shorter as the wave's frequency increases
- a. <u>Pitch</u> is the perception of how high or low a sound seems
- **b.** A sound that has a high <u>frequency</u> is considered to have a(n) <u>high</u> pitch.
- **3.** The greater the energy in a sound is, the <u>farther</u> the particles move as they <u>vibrate</u> a The amplitude of a sound wave is the distance that a vibrating particle moves from its rest position.
- **b.** The more energy a sound <u>wave</u> has, the <u>greater</u> the amplitude of the wave will be
- 4. Sound waves travel much slower than electromagnetic waves do
- a. Sound waves travel slower through gases than through solids because the between particles in a gas. particles in gases are farther apart; so it takes longer to transfer sound energy
- **b.** Sound waves travel faster as the temperature of a gas <u>increases</u>, and sound waves travel slower as the temperature of a liquid decreases
- 'n Loudness is a person's perception of a sound's intensity.
- <u>ە</u> The decibel, abbreviated dB, is the unit used to measure sound intensity or loudness
- 7. Sounds above 80 dB can result in permanent hearing loss
- Hearing and the Ear
- 0 1. The external outer ear collects sound waves
- 2. The middle ear includes the eardrum and three small bones; this part of the ear amplifies, or intensifies, the sound waves.

Waves, Light, and Sound

5

Lesson Outline continued

3. The inner ear contains the <u>cochlea</u>, which converts sound waves to <u>nerve</u> signals that the brain then processes, creating the perception of sound

Discussion Question

at full volume, produces the sound that has the lowest amplitude-triangle, tuba, violin, or frequency-bass guitar, flute, classical or acoustic guitar, or cello? Which instrument, played bass drum? Explain your answers. Which instrument, when playing its full range, produces the sound that has the highest

amplitude. sound that has the least energy; therefore, its sound waves would have the lowest the highest frequency. Of the choices, the triangle is by far the smallest, so it produces the Of the choices, the flute can reach the highest pitch, so it can produce the sound that has

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Waves, Light, and Sound